42. Essentials Of Biochemistry

You are here: Home / 42. Essentials Of Biochemistry

42. Essentials Of Biochemistry

 

 

CATEGORY: Medical & Medicine – 500 Courses

COURSE NUMBER: 42

FEES: 555/- INR only

CERTIFICATE VALIDITY: Lifetime

CERTIFICATES DELIVERY: In 48 hours

BOOKS/ MANUALS: Pages

Syllabus

1 The Cell and Its Components ……………………………………… 1
1.1 Typical Prokaryotic Cell: Escherichia coli ……………………….. 1
1.2 Archaea ……………………………………………………….. 2
1.3 Eukaryotic Cell (Non-Plant) …………………………………….. 3
1.4 Eukaryotic Cell Components (Plant) …………………………….. 4
2 Introduction to Biomolecules ………………………………………. 5
2.1 Amino Acids …………………………………………………… 5
2.1.1 Essential Amino Acids ……………………………………. 9
2.1.2 Optical Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Carbohydrates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.1 Monosaccharides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.2 Disaccharides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.3 Polysaccharides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3 Lipids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.1 Fatty Acids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.2 Triacylglycerols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.3 Phosphoacylglycerols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.4 Sphingolipids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3.5 Waxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3.6 Terpenes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3.7 Sterols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3.8 Prostaglandins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3.9 Membranes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.4 Nucleotides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.4.1 The Bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.4.2 The Sugars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.4.3 The Nucleosides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.4.4 The Nucleotides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 Protein Structure and Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.1 Proteins Are Polymers of Amino Acids, Characterized
by Four “Levels” of Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2 The Protein “Main Chain” Controls Conformational Flexibility . . . . . 37
3.3 Common Secondary Structural Elements the Alpha Helix
and the Beta Sheet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.4 Tertiary Structure: Proteins Exhibit Common Folds . . . . . . . . . . . . . . . . . . 42
3.5 Quaternary Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.6 What Are Protein Structures and How Are Protein
Structures Measured? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.7 Hemoglobin: An Example of Protein Structure and Function . . . . . . . . 46
3.8 Protein Folding and Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4 Enzymes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.1 Characteristics of Enzymes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2 Enzyme Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.3 Mechanisms of Enzyme Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.4 Nucleophilic Substitution Reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.4.1 SN1 (Substitution, Nucleophilic, First Order Reaction) . . . . . . 64
4.4.2 SN2 (Substitution, Nucleophilic, Second Order) . . . . . . . . . . . . . . 65
4.4.3 Stereochemistry of Nucleophilic Substitution Reactions . . . . . 65
4.5 Phosphorous Compounds and Their Chemistry . . . . . . . . . . . . . . . . . . . . . 65
4.5.1 Oxidation States of Phosphorous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.5.2 Types of Reaction Involving Phosphorous . . . . . . . . . . . . . . . . . . . . 66
4.6 Studying the Stereochemistry of Enzyme-Catalyzed Reactions . . . . . 67
4.6.1 The Use of Chiral Phosphorous Compounds . . . . . . . . . . . . . . . . . 67
4.6.2 Isotope Scrambling (Positional Isotope Exchange) . . . . . . . . . . . 68
4.7 Studies on the Mechanism of Enzyme Action
Using Transition State Analogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.7.1 Proline Racemase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.7.2 Adenylate Kinase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.7.3 Lysozyme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.8 Mechanism of Chymotrypsin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.9 Specificity of the Serine Proteases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.10 Low-Barrier Hydrogen Bonds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.11 Mechanism of Glucoamylase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.12 Substrate Channeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5 Enzyme Kinetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.1 Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.2 Brief Review of Chemical Kinetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.3 The Evolution of Enzyme Kinetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.3.1 Historical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.3.2 Time Course of Enzyme-Catalyzed Reactions . . . . . . . . . . . . . . . . 84
5.3.3 Derivation of the Henri–Michaelis–Menten Equation . . . . . . . . 85
5.3.4 The Haldane Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.3.5 Shorthand Method for Deriving Rate Equations
for the Reverse Reaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.3.6 Enzyme Inhibition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.3.7 Reversible Enzyme Inhibition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.3.8 The Effect of pH on Enzyme Kinetics . . . . . . . . . . . . . . . . . . . . . . . . 99
5.3.9 The Effect of Temperature on Enzyme Kinetics . . . . . . . . . . . . 101
5.3.10 The Integrated Henri–Michaelis–Menten Equation . . . . . . . . . 101
5.3.11 Kinetic Isotope Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.3.12 Miscellaneous Methods for Studying Enzyme Kinetics . . . . . 105
5.3.13 Cooperativity and Sigmoidal Kinetics . . . . . . . . . . . . . . . . . . . . . . . 106
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6 Coenzymes and Vitamins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.1 Coenzymes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.1.1 NAD+ and NADP+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.1.2 Biotin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
6.1.3 Thiamine Pyrophosphate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
6.1.4 Coenzyme A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
6.1.5 Pyridoxal Phosphate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
6.1.6 Flavin Coenzymes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
6.1.7 Lipoic Acid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
6.1.8 Folic Acid Coenzymes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
6.1.9 Vitamin B12 Coenzymes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
6.2 Vitamins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
6.2.1 Vitamin A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
6.2.2 Vitamin C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
6.2.3 Vitamin D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
6.2.4 Vitamin E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
6.2.5 Vitamin K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
7 Introduction to Metabolism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
7.1 High Energy Compounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
7.1.1 ATP (as Well as Other Nucleoside Di-and Triphosphates) . . . 152
7.1.2 Acetyl Phosphate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
7.1.3 Creatine Phosphate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
7.1.4 Phosphoenolpyruvate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
7.1.5 Pyrophosphate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
7.1.6 Acetyl-Coenzyme A (Acetyl-CoA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
7.2 Intermediate Energy Compounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
7.3 Low Energy Compounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

7.4 Regeneration of Nucleoside Di- and Tri-Phosphates . . . . . . . . . . . . . . . . 155
7.5 Metabolic Pathways and Their Regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
7.5.1 The Concept of the “Committed Step”
in a Metabolic Pathway . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
7.5.2 Metabolic Pathways Are Highly Exergonic . . . . . . . . . . . . . . . . . . . 157
7.5.3 Pathways Are Not Thermodynamically Reversible,
But They Are Physiologically Reversible . . . . . . . . . . . . . . . . . . . . . 158
7.5.4 Feed Forward Activation and Feed-Back Inhibition . . . . . . . . . . 158
7.5.5 Equilibrium Versus Nonequilibrium Enzymes
as Sites of Regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
7.5.6 Modulation of Enzyme Activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
8 Carbohydrate Metabolism A: Glycolysis and Gluconeogenesis . . . . . . 163
8.1 Glycolysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
8.1.1 Glycolytic Enzymes and Their Mechanisms of Action . . . . . . . 165
8.1.2 Metabolism of D-Mannose and D-Galactose . . . . . . . . . . . . . . . . . . . 176
8.1.3 Regulation of Glycolysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
8.2 Gluconeogenesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
8.2.1 Pyruvate Carboxylase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
8.2.2 Phosphoenolpyruvate Carboxykinase . . . . . . . . . . . . . . . . . . . . . . . . . 186
8.2.3 Fructose-1,6-Bisphosphatase1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
8.2.4 Glucose-6-Phosphatase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
8.3 Coordinated Regulation Between Glycolysis
and Gluconeogenesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
8.4 The Cori Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
8.5 The Glucose–Alanine Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
8.6 Shuttle Mechanisms Allow Oxaloacetate Transport
from Mitochondria to the Cytosol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
8.7 The Pentose Phosphate Shunt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
8.7.1 The Enzymes of the Pentose Phosphate Shunt . . . . . . . . . . . . . . . . 197
8.7.2 Regulation of the Pentose Phosphate Pathway . . . . . . . . . . . . . . . . 202
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
9 The Tricarboxylic Acid Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
9.1 The Conversion of Pyruvate to Acetyl-CoA . . . . . . . . . . . . . . . . . . . . . . . . . 206
9.2 The TCA Cycle: The Fate of Acetyl-CoA . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
9.3 Energetics of Pyruvate Oxidation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
9.4 Stereochemistry of the TCA Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
9.5 TCA Cycle Enzymes and Their Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . 214
9.5.1 Citrate Synthase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
9.5.2 Aconitase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
9.5.3 Isocitrate Dehydrogenase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
9.5.4 a-Ketoglutarate Dehydrogenase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
9.5.5 Succinyl-CoA Synthetase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
9.5.6 Succinate Dehydrogenase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
9.5.7 Fumarase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
9.5.8 Malate Dehydrogenase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
9.6 Regulation of Acetyl-CoA Oxidation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
9.6.1 Pyruvate Dehydrogenase Regulation . . . . . . . . . . . . . . . . . . . . . . . . . . 220
9.6.2 TCA Cycle Regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
10 Electron Transport and Oxidative Phosphorylation . . . . . . . . . . . . . . . . . 223
10.1 Electron Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
10.2 Components of the Electron Transport Chain . . . . . . . . . . . . . . . . . . . . 226
10.2.1 Coenzyme Q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
10.2.2 Iron Sulfur Proteins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
10.2.3 The Cytochromes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
10.3 Electron and Proton Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
10.4 The Chemiosmotic Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
10.5 ATP Synthase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
10.5.1 The Binding Change Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . 233
10.5.2 Chemical Mechanism of the ATP Synthase Reaction . . . . 235
10.6 Transport of Nucleotides and Pi Through
Mitochondrial Membranes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
10.7 The Fate of NADH in Aerobic Tissue . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
10.8 The Regulation of Oxidative Phosphorylation . . . . . . . . . . . . . . . . . . . . 237
10.9 Inhibitors of Oxidative Phosphorylation . . . . . . . . . . . . . . . . . . . . . . . . . . 237
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
11 Carbohydrate Metabolism B: Di-, Oligo-, and Polysaccharide
Synthesis and Degradation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
11.1 Disaccharide Synthesis and Degradation . . . . . . . . . . . . . . . . . . . . . . . . . 239
11.1.1 Sucrose (Table Sugar) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
11.1.2 Lactose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
11.1.3 Maltose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
11.2 Glycogenolysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
11.2.1 Glycogen Phosphorylase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
11.2.2 Glucan Transferase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
11.2.3 a(1!6) Glucosidase (Debranching Enzyme) . . . . . . . . . . . . . 248
11.3 Glycogenesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
11.3.1 Glycogen Synthase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
11.3.2 The Branching Enzyme (Amylo-(1,4!1,6)-
Transglucosylase) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
11.3.3 Glycogenin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
11.4 Regulation of Glycogen Metabolism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
11.5 Regulation of Phosphorylase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
11.6 Regulation of Glycogen Synthase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

11.7 Synthesis and Degradation of Starch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
11.8 Synthesis and Degradation of Cellulose . . . . . . . . . . . . . . . . . . . . . . . . . . 255
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
12 Lipid Metabolism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
12.1 Lipid Digestion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
12.2 Degradation of Fatty Acids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
12.3 Transport of Fatty Acids into Mitochondria . . . . . . . . . . . . . . . . . . . . . 260
12.4 b-Oxidation of Fatty Acids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
12.5 Energetics of the b-Oxidation Pathway . . . . . . . . . . . . . . . . . . . . . . . . . . 262
12.6 b-Oxidation of Unsaturated Fatty Acids . . . . . . . . . . . . . . . . . . . . . . . . . 263
12.7 Oxidation of Odd Numbered Fatty Acids . . . . . . . . . . . . . . . . . . . . . . . 263
12.8 Fatty Acid Biosynthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
12.9 Comments on the FAS system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
12.10 Regulation of Fatty Acid Metabolism . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
12.11 Triacylglycerol Biosynthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
12.12 Ketone Body Formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
12.13 Fatty Acid Elongation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
12.14 Fatty Acid Desaturation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
12.15 Lipoproteins and Lipid Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
12.16 Cholesterol Biosynthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
12.17 The Glyoxylate Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
13 Amino Acid Metabolism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
13.1 The Nitrogen Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
13.2 Amino Acid Metabolism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
13.3 Biosynthesis of the Nonessential Amino Acids . . . . . . . . . . . . . . . . . . . 280
13.4 Amino Acid Degradation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
13.5 Essential Amino Acids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
13.6 Amino Acids Are Precursors of Metabolic Regulators . . . . . . . . . . . 286
13.6.1 Glutathione . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
13.6.2 Epinephrine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
13.6.3 Histamine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
13.6.4 Serotonin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
13.6.5 Thyroxine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
13.6.6 Nitric Oxide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
13.6.7 S-adenosylmethionine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
13.7 The Krebs Urea Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
14 Nucleotide Metabolism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
14.1 De Novo Pyrimidine Nucleotide Biosynthesis . . . . . . . . . . . . . . . . . . . . 293
14.1.1 The Synthesis of Uridine-50
-Monophosphate . . . . . . . . . . . . . 293

14.1.2 Enzymes of Pyridine Nucleotide Biosynthesis . . . . . . . . . . . 295
14.1.3 Synthesis of Cytidine Nucleotides . . . . . . . . . . . . . . . . . . . . . . . . 299
14.1.4 Control of Pyrimidine Nucleotide Biosynthesis . . . . . . . . . . 300
14.2 Pyrimidine Catabolism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
14.3 De Novo Purine Nucleotide Biosynthesis . . . . . . . . . . . . . . . . . . . . . . . . . 302
14.3.1 The Biosynthesis of Inosine-50

-Monophosphate . . . . . . . . . . 303
14.3.2 AMP and GMP Biosynthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304
14.3.3 Purine Nucleotide Biosynthesis: Enzyme Mechanisms . . . 305
14.3.4 Regulation of Purine Nucleotide Biosynthesis . . . . . . . . . . . . 309
14.4 Deoxyribonucleotide Synthesis and Regulation . . . . . . . . . . . . . . . . . . 310
14.5 Thymidylate Synthase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
14.6 Degradation of Purines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
14.7 Purine and Pyrimidine Nucleotide Salvage Pathways . . . . . . . . . . . . 314
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314
15 Photosynthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
15.1 The Chloroplast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
15.2 Light and Its Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
15.3 Photosynthesis Pigments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
15.4 The Photosystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320
15.4.1 PSII . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
15.4.2 PSI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
15.5 ATP Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324
15.6 The Light Independent Reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324
15.7 The Calvin Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
15.7.1 The Mechanism of the Rubisco Reaction . . . . . . . . . . . . . . . . . 327
15.7.2 Starch and Sucrose Can Be Used to Synthesize
D-Glucose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
15.7.3 Regulation of the Calvin Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
15.7.4 Comments on the Calvin Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
16 DNA, RNA, and Protein Metabolism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
16.1 DNA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
16.1.1 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
16.1.2 DNA Replication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334
16.1.3 Repair of DNA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
16.1.4 Degradation of Cellular DNA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338
16.2 RNA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338
16.2.1 The Central Dogma Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 339
16.2.2 Posttranslational Modification of tRNA,
rRNA, and mRNA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
16.2.3 Ribozymes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
16.2.4 Degradation of RNA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344

16.3 Protein Metabolism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344
16.3.1 Protein Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344
16.3.2 Intracellular Protein Catabolism . . . . . . . . . . . . . . . . . . . . . . . . . . 351
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353

……………………………………………………………………………………………………………………………………………………………………………………………………………………

 

Medifit  Courses Demo Certificate 

48 hours delivery

| International acceptance | Medical based | Job oriented | Lifetime validity | Most economical |

 

555 INR Demo Certificate – 2 months duration

Demo Certificate – 6 months duration

48 hours delivery after fees payment

48 hours delivery after fees payment

 

Medifit 48 hours Delivery

  Get your Certificates delivered by online mode in 48 hours after Fees payment. We try to deliver certificates in 24 hours, but the committed delivery hours are 48. Its,

Pay Today &
get Tomorrow

procedure, only by Medifit.

LIFETIME VALIDITY

Medifit issues Lifetime validity certificates for all Online Courses provided. No need to renew the certificates every 2 or 3 years. All Courses Certificates of Medifit are having Lifetime Validity. No need to renew these certificates every 2 or 3 years.

 

What makes the certificates of Medifit to get it recognized Internationally?

Vast number of students applying for Job in international market of Fitness through Medifits Online Courses Certificates. And most importantly, the Medical standards maintained, helps to acquire jobs internationally. This gives very strong International acceptance to Certificates of Medifit Courses.

 

ABOUT MEDIFIT ACADEMY CERTIFICATION COURSE:

Medifit Education Online Academy is an innovative, digital and engaging education platform that delivers fast track accredited courses and skills development courses instantly online, with no time limits, enabling individuals to study anywhere and anytime. We are proud to offer international standard courses that have helped our students build their careers across the globe.

HOW DO MEDIFIT ONLINE CERTIFICATE COURSES HELP?

Short term Professional Courses International Standards courses Opens Global opportunities Career defining Courses Skill Development Programmes Knowledge in short span Learn at your own pace Certification of Completion Immediate Earning Opportunities Positive Social Impact Optimistic Psychological Benefits Improved Standard of Living Study from anywhere & anytime Very Economical Fees