395. Nuclear Medicine, Ultrasonics, Thermography

You are here: Home / 395. Nuclear Medicine, Ultrasonics, Thermography

395. Nuclear Medicine, Ultrasonics, Thermography

 

 

CATEGORY: Medical & Medicine – 500 Courses

COURSE NUMBER: 395

FEES: 555/- INR only

CERTIFICATE VALIDITY: Lifetime

CERTIFICATES DELIVERY: In 48 hours

BOOKS/ MANUALS: Pages

Syllabus

1. Basic Information on Routine Diagnosis in Nuclear

Medicine
Gatz Rassow
Introduction ………………………………. .
I.I.1. Nuclear Therapy ……………………. .

1.1.2. Nuclear Diagnosis ……………………………….. 2
1.2. Nuclear Diagnosis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.1. Indicator Method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.2. Basic Techniques of the Indicator Method . . . . . . . . . . . . 4
1.2.3. Routine Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3. Physical Terms .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
1.3.1. Chemical Elements, Isotopes, Nuclides. . . . . . . . . . . . . . . . . . . . . . . . . 34
1.3.2. Nucleons, Elementary Particles, Emission Particles …………… 36
1.3.3. Nuclear Transformation, Nuclear Decay, Decay Scheme. . . . . . . . . . . 38
1.3.4. Artificial and Natural Radionuclides …………………….. 40
1.3.5. Stability, Half-Life . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
1.3 .6. Metastability……………………………………… 41
1.3.7. Types of Decay. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
1.3.8. Energy of Emission Particles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
1.3.9. Absorption of Emission Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
1.3.10. Effects of Nuclear Decay …………………………….. 47
1.4. Instrumentation……………………………………. 53
1.4.1. Detection and Energy Determination of Individual Emission
Particles . . . . . . . . . . . . . . . . 54
1.4.2. Radiation Detection and Energy Spectrum. . . . . . . . . . . . . . . . . . 56
1.4.3. Radiation Detector Types. . . . . . . . . . . . . . . . . 61
I. 4.4. Statistical Error . . . . . . . . . . . . 65
1.4.5. Radiation-Measuring Instruments 68
2. Scintillation Camera Collimators

2.1. Introduction …… .
2.2. Resolution …. .
2.3. Efficiency………………………………………………. 80
2.4. Septum Penetration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
2.5. System Resolution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
2.6. Converging Collimators ……………………………………. 84
2.7. Diverging Collimators …………….. , . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
2.8. Pinhole Collimators ………………………………………. 86
References …………………………………………………. 87

3. Rectilinear Scanners
Dennis D. Patton

3.1. Introduction……………………………………………. 89
3.2. The Detector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
3.3. Collimator……………………………………………… 94
3.4. Scanning Motion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
3.5. Internal Electronics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
3.6. Display……………………………………………….. 103
3.7. Modified Scanners. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
3.7.1. Multiple Detectors. . . .. .. . … . . . . . . … .. . . .. .. . . .. .. . . .. . . 109
3.7.2. Sector Scanner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
3.7.3. Positron Scanners. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
3.7.4. Profile Scanning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III
3.7.5. Dual-Isotope Subtraction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
3. 8. Clinical Considerations: Scanner or Camera? . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
3.9. Radiopharmaceutical Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . liS
3.10. Patient Factors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
References …………………………………………………. 116
4. A Review of Gamma Camera Technology for Medical

Imaging
Ronald E. McKeighen

4.1. Introduction ……………………………………………. 119
4.2. Image Intensifier Cameras. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
4.2.1. Large-Diameter Image Intensifier Systems. . . . . . . . . . . . . . . . . . . . . . 121
4.2.2. Small-Diameter Image Intensifier Viewing Large-Area
Scintillator through Lens …………………………….. 125
4.2.3. Image-Intensifier Systems with Capability of Generating Centroid
of Light Distribution ……………………………….. 128
4.3. Camera with Multiple-Crystal Detectors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 130
4.4. Cameras Using Semiconductor Detectors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
4.5. Multiwire Proportional Chambers …………………………….. 136
4.5.1. Gas-Filled Chamber. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
4.5.2. Liquid Xenon Chamber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
4.6. Xenon Scintillation Detector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
4.7. Hybrid Scanner-Camera. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

4.8. Approaches Eliminating the Need of a Collimator . . . . . . . . . . . . . . . . . . . . . . . 143
4.9. The Anger Camera. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
4.10. Discussion… .. .. . . . . . .. . .. .. . . . . . . . . . . . .. . . . . .. .. .. . . . . . . . . .. . . 153
References …………………………………………………. 159

5. Tomography
J.A. Patton

5.1. Introduction……………………………………………. 165
5.2. Longitudinal Section Imaging. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
5.3. Transverse Section Imaging. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
5.4. Other Approaches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
5.5. Summary………………………………………………. 180
References …………………………………………………. 180
6. Quantitative Analysis of Minimum Detectable Uptake
Ratios for Nuclear Medicine Imaging Systems

F. R. Whitehead

6.1. Introduction……………………………………………. 183
6.2. Linear System Analysis of Nuclear Medicine Imaging Systems. . . . . . . . . . . . . . 184
6.3. Relationship between Contrast in the Object and the Count Density Image. . . . 186
6.4. The Gray Scale Transfer Function and Perceived Gray Scale Differences
in the Observable Image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
6.5. Effect of Quantum Noise on Image Quality. . .. . .. .. .. . .. . . .. . . .. . . . .. . 190
6.6. Minimum Detectable Lesion-to-Background Uptake Ratios for
Spherical Lesions ………………………………………… 193
6.7. Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
Appendix 6. A. ………………………………………………. 198
Appendix 6. B. ………………………………………………. 204
References ……………. , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

7. X-Ray Fluorescence Imaging

J.A. Patton

7.1. In trod ucti on . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
7.2. Use of X-ray Fluorescence Imaging in Evaluating Thyroid Disorders …….. 210
7.3. Other Applications of Fluorescent Scanning. . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
References …………………………………………………. 215

6.1. Introduction……………………………………………. 183
6.2. Linear System Analysis of Nuclear Medicine Imaging Systems. . . . . . . . . . . . . . 184
6.3. Relationship between Contrast in the Object and the Count Density Image. . . . 186
6.4. The Gray Scale Transfer Function and Perceived Gray Scale Differences
in the Observable Image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
6.5. Effect of Quantum Noise on Image Quality. . .. . .. .. .. . .. . . .. . . .. . . . .. . 190
6.6. Minimum Detectable Lesion-to-Background Uptake Ratios for
Spherical Lesions ………………………………………… 193
6.7. Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
Appendix 6. A. ………………………………………………. 198
Appendix 6. B. ………………………………………………. 204
References ……………. , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

7. X-Ray Fluorescence Imaging

J.A. Patton

7.1. In trod ucti on . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
7.2. Use of X-ray Fluorescence Imaging in Evaluating Thyroid Disorders …….. 210
7.3. Other Applications of Fluorescent Scanning. . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
References …………………………………………………. 215

8. Coded-Aperture Imaging
R. G. Simpson and H. H. Barrett

8.1. Introduction……………………………………………. 217
8.2. Encoding Process ………………………………………… 219

xii Contents
8.3. Decoding-General Remarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
8.4. Decoding Algorithms for Single Coded Images. . . . . . . . . . . . . . . . . . . . . . . . . . 228
804.1. The Fresnel Zone Plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
8.4.2. The Annulus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
8.4.3. Pinhole Arrays .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
8.5. Multicoding ……………………………………………. 261
8.6. Time-Varying Apertures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
8.7. Noise…………………………………………………. 284
8.8. Summary………………………………………………. 297
Appendix ………………………………………………….. 306
References …………………………………………………. 308

9. Diagnostic Uses of Ultrasonic Imaging

Kai Haber

9.1. Historical Perspective. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
9.2. Abdominal Ultrasonography ………………………………… 316
9.3. Obstetrics……………………………………………… 335
9.4. Echocardiography………………………………………… 342
9.5. Neurology……………………………………………… 348
9.6. Ophthalmology………………………………………….. 349
9.7. Miscellaneous Uses of B-Scanning …………………………….. 351
9.8. Doppler……………………………………………….. 352
9.9. Biological Effects of Diagnostic Ultrasound. . . . . . . . . . . . . . . . . . . . . . . . . . . . 354
References …………………………………………………. 355

10. Ultrasonic Imaging: Basic Principles

Theodore Bowen

10.1. Introduction……………………………………………. 359′
10.2. Fundamental Sound Propagation Equations ………………….. .- .. ” 360
10.3. Wave Equation for Sound. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 361
lOA. Interfaces between Different Media. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 363
10.5. Energy Transport by Sonic Waves …………………………….. 365
10.6. Reflection and Refraction of Sonic Waves ……………………….. 366
10.7. Sound Velocities and Acoustic Impedances in the Body. . . . . . . . . . . . . . . . . .. 368
10.8. The Role of Ultrasonic Wavelength and Frequency in Imaging …………. 368
10.9. Attenuation of Ultrasound in Tissues. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 372
10.10. Generation and Detection of Ultrasonic Waves ……………………. 375
10.11. Transmission Design Parameters for a Typical Diagnostic
Ultrasound System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 379
10.12. Reception Design Parameters for a Typical Diagnostic
Ultrasound System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 381
10.13. Transducer Equivalent Circuits ………………………………. , 384
10.\4. Directionality of Ultrasonic Radiation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 385
10.15. The Doppler Effect …….. , .. .. .. .. .. . . .. . .. .. . . . .. . . . . . . . . . . . … 390
10.16. Display of Diagnostic Ultrasonic Images ………………………… 392
References ………………. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 395

11. Medical Aspects of Thermography

Irwin M. Freundlich

11.1. Heat Measurement in Medicine ………………………………. 399
11.2. Heat Regulation and Emanation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 404
11.3. Development of Thermography ………………………………. 406
11.4. Clinical Thermography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 407
11.5. The Problem of Breast Screening ……………………………… 413
11.6. Problems and Potential. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 416
References … . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 417

12. Thermographic Instrumentation
Eustace L. Dereniak

12.1. Introduction……………………………………………. 419
12.2. Present Thermographic Implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 420
12.2.1. Description of Radiation Aspects of Thermography. . . . . . . . . . . . . .. 422
12.2.2. Equipment Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 427
12.2.3. New Instruments ………………………………….. 430
12.3. Ratio Temperature Thermography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 432
12.4. Pattern Recognition Techniques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 434
12.4.1. Preprocessing…………………………………….. 434
12.4.2. Analysis………………………………………… 435
Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 439

13. General Infrared System Analysis
William L. Wolfe and Eustace L. Dereniak

13. I. Introduction……………………………………………. 443
13.2. Signal-to-Noise Ratio for an Ideal System ……………………….. 444
13.3. Subject&……………………………………………….. 451
13.3.1. Introduction……………………………………… 451
13.3.2. Theory for Black- and Graybodies . . . . . . . . . . . . . . . . . . . . . . . . . . .. 451
13.3.3. Assessment of the Background Noise. . . . . . . . . . . . . . . . . . . . . . . . .. 454
13.3.4. Properties of Thermographic Subjects ……………………. 456
13.4. The MTF Approach to a System Description. . . . . . . . . . . . . . . . . . . . . . . . . .. 457
13.4.1. Introduction……………………………………… 457
13.4.2. Transfer Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 457
13.4.3. Imaging in the Spectral Domain. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 458
13.5. Optical and Scanning Systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 460
13.5. I. Introduction……………………………………… 460
13.5.2. Parallel-Beam Scanners ………………………………. 462
13.5.3. Multifaceted Mirrors-Reflective Polygon Scanners. . . . . . . . . . . . . .. 462
13.5.4. Counter-Rotating Prisms and Mirrors .. . . . . . . . . . . . . . . . . . . . . . .. 463
13.5.5. Convergent Beam Scanners. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 464
13.6. Optical Systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 466
13.6.1. Introduction ……………………………………… 466
13.6.2. Simple Design Equations …… . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 466

13.7. Detectors………………………………………………. 468
13.7. I. Introduction…………. . ………………. _ . . . . 468
13.7.2. Photoconductive Detectors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 468
13.7.3. Photodiode Detectors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 471
13.7.4. The Seven Deadly Noises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472
13.8. Realization of a Thermograph Design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475
13.8.1. Introduction…………………………………. 475
13.8.2. Specification…………………………………. 475
13.8.3. Object-Space Scanner Design. . . . . . . . . . . . . . . . . . . . . . . . . . . . 476
13.9. Differential Thermography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 478
13.10. Ratio Temperature Techniques ……………………………… – 479
13.1 I. Error Analysis, Monochromatic Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 484
13.12. Error Analysis, Finite Spectral Bandwidths ……………………….. 487
Appendix 13.A ……………………………………………….. 488
Appendix J3.B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 490
References ……………. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 494
Index 495

……………………………………………………………………………………………………………………………………………………………………………………………………………………

 

Medifit  Courses Demo Certificate 

48 hours delivery

| International acceptance | Medical based | Job oriented | Lifetime validity | Most economical |

 

555 INR Demo Certificate – 2 months duration

Demo Certificate – 6 months duration

48 hours delivery after fees payment

48 hours delivery after fees payment

 

Medifit 48 hours Delivery

  Get your Certificates delivered by online mode in 48 hours after Fees payment. We try to deliver certificates in 24 hours, but the committed delivery hours are 48. Its,

Pay Today &
get Tomorrow

procedure, only by Medifit.

LIFETIME VALIDITY

Medifit issues Lifetime validity certificates for all Online Courses provided. No need to renew the certificates every 2 or 3 years. All Courses Certificates of Medifit are having Lifetime Validity. No need to renew these certificates every 2 or 3 years.

 

What makes the certificates of Medifit to get it recognized Internationally?

Vast number of students applying for Job in international market of Fitness through Medifits Online Courses Certificates. And most importantly, the Medical standards maintained, helps to acquire jobs internationally. This gives very strong International acceptance to Certificates of Medifit Courses.

 

ABOUT MEDIFIT ACADEMY CERTIFICATION COURSE:

Medifit Education Online Academy is an innovative, digital and engaging education platform that delivers fast track accredited courses and skills development courses instantly online, with no time limits, enabling individuals to study anywhere and anytime. We are proud to offer international standard courses that have helped our students build their careers across the globe.

HOW DO MEDIFIT ONLINE CERTIFICATE COURSES HELP?

Short term Professional Courses International Standards courses Opens Global opportunities Career defining Courses Skill Development Programmes Knowledge in short span Learn at your own pace Certification of Completion Immediate Earning Opportunities Positive Social Impact Optimistic Psychological Benefits Improved Standard of Living Study from anywhere & anytime Very Economical Fees