165. Principles Of Bioenergetics

You are here: Home / 165. Principles Of Bioenergetics

 

165. Principles Of Bioenergetics

 

 

CATEGORY: Diet Nutrition Supplementation – 500 Courses

COURSE NUMBER: 165

FEES: 555/- INR only

CERTIFICATE VALIDITY: Lifetime

CERTIFICATES DELIVERY: In 48 hours

BOOKS/ MANUALS: Pages

Syllabus

Part I General Aspects of Bioenergetics
1 Introduction …………………………………. 3
1.1 Definition of the Term ‘‘Bioenergetics’’ and Some
Milestones of its History . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Bioenergetics in the System of Biological Sciences . . . . . . . . 5
1.3 Laws of Bioenergetics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 Evolution of Bioenergetic Mechanisms . . . . . . . . . . . . . . . . . 13
1.4.1 Adenosine Triphosphate . . . . . . . . . . . . . . . . . . . . . 14
1.4.2 Hypothesis of Adenine-Based Photosynthesis. . . . . . . 15
1.4.3 Reserve Energy Sources and Glycolysis . . . . . . . . . . 19
1.4.4 Proton Channels and H+-ATPase as Means
to Prevent Glycolysis-Induced Acidification
of the Cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.4.5 Bacteriorhodopsin-Based Photosynthesis
as the Primordial Mechanism of Visible
Light Energy Transduction . . . . . . . . . . . . . . . . . . . 22
1.4.6 Chlorophyll-Based Photosynthesis . . . . . . . . . . . . . . 23
1.4.7 Respiratory Mechanism of Energy Supply . . . . . . . . . 25
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Part II Generators of Proton Potential
2 Chlorophyll-Based Generators of Proton Potential. . . . . . . . . . . . 31
2.1 Light-Dependent Cyclic Redox Chain of Purple Bacteria . . . . 32
2.1.1 Main Components of Redox Chain and Principle
of Their Functioning . . . . . . . . . . . . . . . . . . . . . . . . 33
2.1.2 Reaction Center Complex . . . . . . . . . . . . . . . . . . . . 36
2.1.3 CoQH2: Cytochrome c-Oxidoreductase . . . . . . . . . . . 49

2.1.4 Ways to Use Dl-Hþ Generated by the Cyclic Photoredox Chain . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.2 Noncyclic Photoredox Chain of Green Bacteria . . . . . . . . . . . 53
2.3 Noncyclic Photoredox Chain of Chloroplasts
and Cyanobacteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.3.1 Principle of Functioning . . . . . . . . . . . . . . . . . . . . . 55
2.3.2 Photosystem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.3.3 Photosystem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
2.3.4 Cytochrome b6f Complex . . . . . . . . . . . . . . . . . . . . 63
2.3.5 Fate of DlHþ Generated by the Chloroplast
Photosynthetic Redox Chain . . . . . . . . . . . . . . . . . . 66
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3 Organotrophic Energetics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.1 Substrates of Organotrophic Energetics . . . . . . . . . . . . . . . . . 71
3.2 Short Review of Carbohydrate Metabolism . . . . . . . . . . . . . . 71
3.3 Mechanism of Substrate Phosphorylation. . . . . . . . . . . . . . . . 75
3.4 Energetic Efficiency of Fermentation . . . . . . . . . . . . . . . . . . 79
3.5 Carnosine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4 The Respiratory Chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.1 Principle of Functioning . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.2 NADH:CoQ-Oxidoreductase (Complex I) . . . . . . . . . . . . . . . 92
4.2.1 Protein Composition of Complex I . . . . . . . . . . . . . . 93
4.2.2 Cofactor Composition of Complex I . . . . . . . . . . . . . 94
4.2.3 Subfragments of Complex I . . . . . . . . . . . . . . . . . . . 95
4.2.4 Inhibitors of Complex I. . . . . . . . . . . . . . . . . . . . . . 96
4.2.5 Possible Mechanisms of DlHþ Generation
by Complex I. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.3 CoQH2:Cytochrome c-Oxidoreductase (Complex III) . . . . . . . 102
4.3.1 Structural Aspects of Complex III . . . . . . . . . . . . . . 102
4.3.2 X-Ray Analysis of Complex III . . . . . . . . . . . . . . . . 104
4.3.3 Functional Model of Complex III . . . . . . . . . . . . . . . 106
4.3.4 Inhibitors of Complex III. . . . . . . . . . . . . . . . . . . . . 108
4.4 Cytochrome c Oxidase (Complex IV) . . . . . . . . . . . . . . . . . . 108
4.4.1 Cytochrome c. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.4.2 Cytochrome c Oxidase: General Characteristics . . . . . 110
4.4.3 X-Ray Analysis of Complex IV . . . . . . . . . . . . . . . . 112
4.4.4 Electron Transfer Pathway in Complex IV . . . . . . . . 113

4.4.5 Mechanism of Dl-Hþ Generation by Cytochrome Oxidase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
4.4.6 Inhibitors of Cytochrome Oxidase . . . . . . . . . . . . . . 116
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5 Structure of Respiratory Chains of Prokaryotes
and Mitochondria of Protozoa, Plants, and Fungi . . . . . . . . . . . . 119
5.1 Mitochondrial Respiratory Chain of Protozoa,
Plants, and Fungi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.2 Structure of Prokaryotic Respiratory Chains. . . . . . . . . . . . . . 122
5.2.1 Respiratory Chain of Paracoccus denitrificans. . . . . . 123
5.2.2 Respiratory Chain of Escherichia coli. . . . . . . . . . . . 124
5.2.3 Redox Chain of Ascaris Mitochondria:
Adaptation to Anaerobiosis . . . . . . . . . . . . . . . . . . . 127
5.2.4 Respiratory Chain of Azotobacter vinelandii . . . . . . . 128
5.2.5 Oxidation of Substrates with Positive Redox Potentials
by Bacterial Respiratory Chains . . . . . . . . . . . . . . . . 129
5.2.6 Respiratory Chain of Cyanobacteria . . . . . . . . . . . . . 131
5.2.7 Respiratory Chain of Chloroplasts . . . . . . . . . . . . . . 132
5.3 Electron Transport Chain of Methanogenic Archaea . . . . . . . . 132
5.3.1 Oxidative Phase of Methanogenesis . . . . . . . . . . . . . 134
5.3.2 Reducing Phase of Methanogenesis . . . . . . . . . . . . . 135
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
6 Bacteriorhodopsin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
6.1 Principle of Functioning . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
6.2 Structure of Bacteriorhodopsin . . . . . . . . . . . . . . . . . . . . . . . 141
6.3 Bacteriorhodopsin Photocycle . . . . . . . . . . . . . . . . . . . . . . . 144
6.4 Light-Dependent Proton Transport by Bacteriorhodopsin. . . . . 145
6.5 Other Retinal-Containing Proteins . . . . . . . . . . . . . . . . . . . . 149
6.5.1 Halorhodopsin . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
6.5.2 Distribution of Bacteriorhodopsin and its Analogs
in Various Microorganisms . . . . . . . . . . . . . . . . . . . 151
6.5.3 Sensory Rhodopsin and Phoborhodopsin . . . . . . . . . . 151
6.5.4 Animal Rhodopsin . . . . . . . . . . . . . . . . . . . . . . . . . 153
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

Part III DlHþ Consumers
7 DlHþ -Driven Chemical Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
7.1 H+-ATP Synthase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
7.1.1 Subunit Composition of H+-ATP Synthase . . . . . . . . 159

7.1.2 Three-Dimensional Structure and Arrangement
in the Membrane . . . . . . . . . . . . . . . . . . . . . . . . . . 161
7.1.3 ATP hydrolysis by Isolated Factor F1 . . . . . . . . . . . . 167
7.1.4 Synthesis of Bound ATP by Isolated Factor F1 . . . . . 169
7.1.5 Fo-Mediated H+

Conductance . . . . . . . . . . . . . . . . . . 169

7.1.6 Possible Mechanism of Energy Transduction
by FoF1-ATP Synthase . . . . . . . . . . . . . . . . . . . . . . 172
7.1.7 H+/ATP Stoichiometry . . . . . . . . . . . . . . . . . . . . . . 174

7.2 H+-ATPases as Secondary DlHþ Generators . . . . . . . . . . . . . 176
7.2.1 FoF1-Type H+-ATPases . . . . . . . . . . . . . . . . . . . . . . 177

7.2.2 V0V1-Type H+-ATPases . . . . . . . . . . . . . . . . . . . . . 179

7.2.3 E1E2-Type H+-ATPases. . . . . . . . . . . . . . . . . . . . . . 180

7.2.4 Interrelations of Various Functions of H+-ATPases. . . 182

7.3 H+-Pyrophosphate Synthase (H+-Pyrophosphatase) . . . . . . . . . 183

7.4 H+-Transhydrogenase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
7.5 Other Systems of Reverse Transfer
of Reducing Equivalents . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
8 DlHþ -Driven Mechanical Work: Bacterial Motility . . . . . . . . . . . 195
8.1 DlHþ Powers the Flagellar Motor . . . . . . . . . . . . . . . . . . . . . 196
8.2 Structure of the Bacterial Flagellar Motor . . . . . . . . . . . . . . . 197
8.3 A Possible Mechanism of the H+-motor . . . . . . . . . . . . . . . . 200

8.4 Dl-Hþ -Driven Movement of Non-Flagellar Motile

Prokaryotes and Intracellular Organelles of Eukaryotes . . . . . . 202
8.5 Motile Eukaryote: Prokaryote Symbionts. . . . . . . . . . . . . . . . 204
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

9 Dl-Hþ -Driven Osmotic Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

9.1 Definition and Classification . . . . . . . . . . . . . . . . . . . . . . . . 207
9.2 DW As Driving Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
9.3 DpH As Driving Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
9.4 Total DlHþ as Driving Force . . . . . . . . . . . . . . . . . . . . . . . . 211
9.5 DlHþ -Driven Transport Cascades . . . . . . . . . . . . . . . . . . . . . 213
9.6 Carnitine: An Example of a Transmembrane Group Carrier. . . 214
9.7 Some Examples of DlHþ -Driven Carriers . . . . . . . . . . . . . . . 217
9.7.1 Escherichia coli Lactose, H+

-Symporter . . . . . . . . . . 218
9.7.2 Mitochondrial ATP/ADP-Antiporter . . . . . . . . . . . . . 221
9.8 Role of DlHþ in Transport of Macromolecules. . . . . . . . . . . . 224
9.8.1 Transport of Mitochondrial Proteins:
Biogenesis of Mitochondria . . . . . . . . . . . . . . . . . . . 225
9.8.2 Transport of Bacterial Proteins. . . . . . . . . . . . . . . . . 226
9.8.3 Role of DW in Protein Arrangement
in the Membrane . . . . . . . . . . . . . . . . . . . . . . . . . . 227
9.8.4 Bacterial DNA Transport. . . . . . . . . . . . . . . . . . . . . 227
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

10 Dl-Hþ as Energy Source for Heat Production . . . . . . . . . . . . . . . . 231

10.1 Three Ways of Converting Metabolic Energy into Heat . . . . . 231
10.2 Thermoregulatory Activation of Free
Respiration in Animals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
10.2.1 Brown Fat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
10.2.2 Skeletal Muscles. . . . . . . . . . . . . . . . . . . . . . . . . . . 236
10.3 Thermoregulatory Activation of Free Respiration in Plants . . . 240
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

Part IV Interaction and Regulation of Proton Potential
Generators and Consumers
11 Regulation, Transmission, and Buffering of Proton Potential . . . . 245
11.1 Regulation of DlHþ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
11.1.1 Alternative Functions of Respiration . . . . . . . . . . . . . 245
11.1.2 Regulation of Flows of Reducing Equivalents
Between Cytosol and Mitochondria . . . . . . . . . . . . . 248
11.1.3 Interconversion of DW and DpH. . . . . . . . . . . . . . . . 249

11.1.4 Relation of Dl-Hþ Control to the Main Regulatory

Systems of Eukaryotic Cells . . . . . . . . . . . . . . . . . . 250

11.1.5 Control of Dl-Hþ in Bacteria. . . . . . . . . . . . . . . . . . . 251

11.2 Energy Transmission Along Membranes
in the Form of DlHþ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
11.2.1 General Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 252
11.2.2 Lateral Transmission of DlHþ Produced by
Light-Dependent Generators in Halobacteria
and Chloroplasts. . . . . . . . . . . . . . . . . . . . . . . . . . . 253
11.2.3 Trans-Cellular Power Transmission
Along Cyanobacterial Trichomes . . . . . . . . . . . . . . . 253
11.2.4 Structure and Functions of Filamentous Mitochondria
and Mitochondrial Reticulum . . . . . . . . . . . . . . . . . . 254
11.3 Buffering of DlHþ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
11.3.1 Na+/K+ Gradients as a DlHþ Buffer in Bacteria. . . . . . 265
11.3.2 Other DlHþ -Buffering Systems. . . . . . . . . . . . . . . . . 268
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
Part V The Sodium World

12 Dl-Naþ Generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

12.1 Na+-Motive Decarboxylases. . . . . . . . . . . . . . . . . . . . . . . . . 275
12.2 Na+-Translocating NADH:Quinone-Oxidoreductase . . . . . . . . 277
12.2.1 Primary Structure of Subunits of Na+-Translocating
NADH:Quinone Oxidoreductase. . . . . . . . . . . . . . . . 277
Contents xi

12.2.2 Na+-NQR Prosthetic Groups . . . . . . . . . . . . . . . . . . 279

12.3 Na+-Motive Methyltransferase Complex from
Methanogenic Archaea . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
12.4 Na+-Motive Formylmethanofuran Dehydrogenase
from Methanogenic Archaea . . . . . . . . . . . . . . . . . . . . . . . . 281
12.5 Secondary DlNaþ Generators: Na+-Motive ATPases and Na+-Pyrophosphatase . . . . . . . . . . . . . . . . . . . . . . . . . . 282
12.5.1 Bacterial Na+-ATPases . . . . . . . . . . . . . . . . . . . . . . 282

12.5.2 Animal Na+/K+-ATPase and Na+-ATPase . . . . . . . . . 283

12.5.3 Na+-Motive Pyrophosphatase . . . . . . . . . . . . . . . . . . 284
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
13 Utilization of DlNaþ Produced by Primary DlNaþ Generators . . . . 287
13.1 Osmotic Work Supported by DlNaþ . . . . . . . . . . . . . . . . . . . 287
13.1.1 Na+, Metabolite-Symporters. . . . . . . . . . . . . . . . . . . 287
13.1.2 Na+ Ions and Regulation of Cytoplasmic pH . . . . . . . 288
13.2 Mechanical Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
13.3 Chemical Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

13.3.1 Dl-Naþ -Driven ATP Synthesis in Anaerobic Bacteria . . . 291

13.3.2 Dl-Naþ Consumers Performing Chemical Work

in Methanogenic Archaea . . . . . . . . . . . . . . . . . . . . 293
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
14 Relations Between the Proton and Sodium Worlds . . . . . . . . . . . 297
14.1 How Often is the Na+ Cycle Used by Living Cells? . . . . . . . . 297
14.2 Probable Evolutionary Relationships of the Proton
and Sodium Worlds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
14.3 Membrane-Linked Energy Transductions Involving
Neither H+ Nor Na+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302

Part VI Mitochondrial Reactive Oxygen Species
and Mechanisms of Aging
15 Concept of Aging as a Result of Slow Programmed Poisoning
of an Organism with Mitochondrial Reactive Oxygen Species . . . 305
15.1 Nature of ROS and Paths of their Formation in the Cell . . . . . 306
15.2 How Do Living Systems Protect Themselves from ROS? . . . . 309
15.2.1 Antioxidant Compounds . . . . . . . . . . . . . . . . . . . . . 309
15.2.2 Decrease in Intracellular Oxygen Concentration . . . . . 309
15.2.3 Decrease in ROS Production
by the Respiratory Chain . . . . . . . . . . . . . . . . . . . . . 312
15.2.4 Mitoptosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315

15.2.5 Apoptosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
15.2.6 Necrosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320
15.2.7 Phenoptosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
15.3 Biological Function of ROS. . . . . . . . . . . . . . . . . . . . . . . . . 323
15.4 Aging as Slow Phenoptosis Caused by Increase
in mROS Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326
15.4.1 Definition of the Term ‘‘Aging’’ and a Short
Historical Overview of the Problem . . . . . . . . . . . . . 326
15.4.2 Phenoptosis of Organisms that Reproduce
Only Once . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
15.4.3 Can Aging be a Slow Form of Phenoptosis? . . . . . . . 333
15.4.4 Mutations that Prolong Lifespan. . . . . . . . . . . . . . . . 336
15.4.5 ROS and Aging . . . . . . . . . . . . . . . . . . . . . . . . . . . 339
15.4.6 Naked Mole-Rat . . . . . . . . . . . . . . . . . . . . . . . . . . . 340
15.4.7 Aging Program: Working Hypothesis . . . . . . . . . . . . 342
15.4.8 Paradox of Protein p53 . . . . . . . . . . . . . . . . . . . . . . 343
15.4.9 Arrest of Age-Dependent Increase of Mitochondrial
ROS as a Possible Way to Slow
the Aging Program . . . . . . . . . . . . . . . . . . . . . . . . . 344
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346
16 Possible Medical Applications of Membrane Bioenergetics:
Mitochondria-Targeted Antioxidants as Geroprotectors. . . . . . . . 355
16.1 SkQ Decelerates the Aging Program. . . . . . . . . . . . . . . . . . . 355
16.2 Comparison of Effects of Food Restriction and SkQ. . . . . . . . 372
16.3 From Homo sapiens to Homo sapiens liberatus . . . . . . . . . . . 376
16.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378
Appendix 1: Energy, Work, and Laws of Thermodynamics . . . . . . . . 383
Appendix 2: Prosthetic Groups and Cofactors . . . . . . . . . . . . . . . . . . 393
Appendix 3: Inhibitors of Oxidative Phosphorylation . . . . . . . . . . . . . 403
Appendix 4: Plant Hormones. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407
Appendix 5: Mitochondria-Targeted Antioxidants and Related

Penetrating Compounds. . . . . . . . . . . . . . . . . . . . . . . . . 409

Appendix 6: Mitochondria-Targeted Natural Rechargeable

Antioxidant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413

Appendix 7: Key Participants of the Project ‘‘Practical Application
of Penetrating Cations’’ . . . . . . . . . . . . . . . . . . . . . . . . . 417
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421
Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423
Subject Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427
Index of Organisms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435

……………………………………………………………………………………………………………………………………………………………………………………………………………………

 

Medifit  Courses Demo Certificate 

48 hours delivery

| International acceptance | Medical based | Job oriented | Lifetime validity | Most economical |

 

555 INR Demo Certificate – 2 months duration

Demo Certificate – 6 months duration

48 hours delivery after fees payment

48 hours delivery after fees payment

 

Medifit 48 hours Delivery

  Get your Certificates delivered by online mode in 48 hours after Fees payment. We try to deliver certificates in 24 hours, but the committed delivery hours are 48. Its,

Pay Today &
get Tomorrow

procedure, only by Medifit.

LIFETIME VALIDITY

Medifit issues Lifetime validity certificates for all Online Courses provided. No need to renew the certificates every 2 or 3 years. All Courses Certificates of Medifit are having Lifetime Validity. No need to renew these certificates every 2 or 3 years.

 

What makes the certificates of Medifit to get it recognized Internationally?

Vast number of students applying for Job in international market of Fitness through Medifits Online Courses Certificates. And most importantly, the Medical standards maintained, helps to acquire jobs internationally. This gives very strong International acceptance to Certificates of Medifit Courses.

 

ABOUT MEDIFIT ACADEMY CERTIFICATION COURSE:

Medifit Education Online Academy is an innovative, digital and engaging education platform that delivers fast track accredited courses and skills development courses instantly online, with no time limits, enabling individuals to study anywhere and anytime. We are proud to offer international standard courses that have helped our students build their careers across the globe.

HOW DO MEDIFIT ONLINE CERTIFICATE COURSES HELP?

Short term Professional Courses International Standards courses Opens Global opportunities Career defining Courses Skill Development Programmes Knowledge in short span Learn at your own pace Certification of Completion Immediate Earning Opportunities Positive Social Impact Optimistic Psychological Benefits Improved Standard of Living Study from anywhere & anytime Very Economical Fees

[/cmsms_text][/cmsms_column][/cmsms_row]